Numerical Investigation of Natural Convection Heat Transfer in Partially Filled Porous Enclosure Subjected to Constant Heat Flux


Fouad J. Zachi*, Luma F. Ali


Department of Mechanical Engineering / University of Baghdad

Corresponding Author Email: f.zaji1209@coeng.uobaghdad.edu.iq

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4) and Rayleigh number range (60.354 – 241.41), (1.304×106 – 5.2166×106) for Da1 and Da2 cases respectively. Numerically, COMSOL Multiphysics 5.5a® based on the Galerkin finite element method is used for solving the governing equations with depending Brinkman- Darcy extended mode for porous media region. The results show that, effects of increasing the Rayleigh number on the temperature profile besides the progressively increasing the average Nusselt number. Moreover, symmetrical distribution of local Nu along the bottom heated wall and it is be minimum at midpoint of bottom. Also, the heat transfer and fluid flow are affected by thickness of porous layer and are maximum at porous layer thickness (0.25L) which clearly observed with large heater size to be approximately (93%) for the average Nu. Generally, the heat transfer is enhanced for large Darcy number (8.852×10-4) and influenced by the convection regime improvement while it is mainly conduction mode for (Da1) for all Raleigh number with a little effect of convection when increase (Ra).