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ABSTRACT: A completely developed laminar flow-based velocity distributions availed by a model governed 
by a power-law rheology of fluid has been utilized, while glutinous indulgence was considered. The conceptual 
analysis of the performance of heat transfer was executed under an unchanged wall temperature case. A 
significant feature of such approach is permitting a commonplace distribution of neighboring mid-temperature 
as well as the fluid’s simpleton velocity distribution. All of these mechanisms had been tested by a relativity 
with the prevalent results. The Brinkman number’s effects and rheological materials on the home Nusselt 
number’s distribution were studied. It has been shown that the notion associated with the Nusselt number 
stubbornly relies upon the power law based index value. That Nusselt number strikingly gets reduced in the 0 < 
n < 0.1 range. Nonetheless, for n > 0.5, again, for n > 1, Nusselt number values are approaching an invariable 
value. 
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INTRODUCTION 

A good understanding of heat convection using non-Newtonian fluids within circular tube is critical towards 
the design in connection with numbers of thermal instruments. From this perspective, heat transfer 
shortcomings in relation with this kind have been inspected by many researchers [1-6].The fundamental Graetz 
problem that had firstly been resolved analytically by Graetz [7], has now been the classic Graetz –Nusselt 
problem within a singular segment flow, which ignores the axial heat conduction effects, sources of thermal 
power within fluid, and gluey dissipation. It is acknowledged to be one of the most significant resolutions for 
science of heat transfer wile it presides over the convective heat transfer fluid flow  with the case of fluid using 
recognized velocity profile as well as gets related with the outcome of the rate of heat transfer in a completely 
developed fluid flowing flow . This kind of resolution lets temperature profile as measured from the motion and 
energy centric joined equations [1, 8, 9]. 

An all-inclusive analytically studied power-law fluid flow, which is fully developed within a circular pipeline 
for both wall temperature and standardized wall heat flux, has been done[10], however the authors overlooked 
the gluey dissipation effects. They have demonstrated that the value of  Nusselt number for an power-law fluid 
in is provided as:  
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With n indicate the index of power-law. Where n =1, Eqn. (1) result as: 
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Nonetheless, Graetz problem is escalated as issues that concentrate on disorderly flows, forced convection 
within a permeable means, non-Newtonian flowing, and the impacts of gluey indulgence for Newtonian liquid 
and that incorporate heat conduction effects [2, 5, 10-13]. Among the above cited works, no studies are 
available in relation with the gluey dissipation effects upon the heat transfer for not Newtonian liquid. 

Hence, the purpose of the current study has been to resolve the problem related to heat transfer with forced 
convection mathematically, in a pipeline submitted to consistent wall temperature with completely developed 
zone, it has been kind of Graetz problem, deriving full mathematical resolutions appropriate to a liquid heat 
distribution as well as Nusselt number (local). As the current study highlights heat transfer with adequately 
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huge Peclet number(Pe), the study considers the axial heat conduction to be ignorable. Nevertheless, gluey 
dissipation has been taken into consideration. Numerical measurements have been performed to expose the 
rheological properties effects as well as Brinkman number(Br) effects upon the Nusselt number (local) 
distribution. 

In the literature, they has been studied the Newtonian fluid slug flow forced convection with reference for flow 
with turbulent or to flow with laminar for law value of the Prandtl number Moreover,  we can describe with 
good thermal contact slug flow forced convection a solid rod moving  through a heated sleeve. The researchers 
have been found some of the most important results reviewed by Shah and Bhatti [2]. The region  with thermal 
entrance has been examined by Golos [3] and by Tyagi a.nd Nigam studied  heat transfer and the momentum on 
a the power law fluids continuous moving surface for the power law fluids. Recently, significant consideration 
has been dedicated to the problem of how of how to foresee the conduct of the heat transfer and flow behavior 
of fluids with non-Newtonian. The principle purpose behind this is most likely that fluids (such as pulps, 
molten plastics, emulsions, slurries, etc.), which don't comply with the Newtonian postulate that the stress 
tensor is legitimately corresponding to the deformation tensor, are delivered mechanically in expanding 
amounts and are in this way now and again similarly prone to be pumped in a plant as the more common 
Newtonian fluids. Researchers have been attempting to set up a scientific model to express the connection 
between the stress and deformation and heat transfer for the non-Newtonian fluids.[14,12,15] .The main 
objective of this study is to investigate, in depth, the analytical solution of constant wall temperature for fluid 
flow inside a pipe. 

FORMULATION OF MATHEMATICAL MODEL  

Fig (1) Notations and axes of the fully developed constant wall temperature on pipe  
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Figure 1. Problem description 

The shear stress ( rzτ )   over a viscous fluid is formulated [3, 14-16] as: 
 

1n
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= −                            (3) 

 
n is represented the parameter index of power-law model.  
There are three cases as: pseudo-plastic fluid where n <1, Newtonian fluid for n =1, and dilatant fluid when n 
>1 
There are simplifying assumptions as following:  
1. The flow is laminar and steady. 
2. Physical properties are constant. 
3. The effects of Natural convection are neglected 
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With substituted Eqn. (3) with Eqn. (4), the expression for shear stress can be written as: 
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for steady-state heat , heat balancing can be  taken  as follows[1, 6, 8, 14]: 
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    (6) 

Where k, c and ρ are the thermal conductivity specific heat, and density, respectively.  
 
The applicable boundary conditions are :  
 

1: 0BC r at centerline r R at Wall= =   

2 : 0 0TBC at r
r

∂
= =

∂
  

3 : wBC at r R T T= =    
  
 
Now, coupling Eqn. (4) with Eqn. (6) represents; 
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thermal diffusivity α is defined by: 
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Introduce the dimensionless quantities as follows: 
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The dimensionless partial differential energy equation, eqns ( 7,9 ) can be written as : 
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 By introduce Brinkman number (Br ) as : 
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Where the Peclet number (Pe) is written as : 
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Now  the dimensionless boundary is : 
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For  constant wall temp.so the θ (ξ ,η) is a function of dimensional cylindrical coordinate (ξ ) only . 
 

So : 0Aθ
η

∂
=

∂
 = constant       (14) 

Solving   Eqn. (14) with  Eqn. (10) represents as: 
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We can formulate new variables as: 
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By solving  Eqns. (15-18)  gets ; 
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By solving  differential equation , the temperature profile can written as follows: 

( ) ( )
2 2 2

0 12 2
1 1( ) ln 2
4 2 2

NC C Cβ βθ ξ ξ ξ ξ ξ
β β

+ +
 

= − − + + 
 + + 

       (20) 

By getting all constants , the dimensionless temperature profile can formulated as follows: 
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By applying the other boundary condition the constant (C0 ) written as :  
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Coupling Eqn ( up ) with  Eqn. (21), the local radial temperature profile  written  as: 
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In another form: 
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The bulk temperature is written as  ]2 ,14[  : 
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The  bulk temperature in dimensionless form becomes: 
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and φ is the velocity profile in dimensionless form as : 

m

u
u

φ =       (27)  

By substitution Eqns. (4) and Eqn. ( 26) into Eqn. (23) , temperature profiles  and velocity  
becomes: 
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By integrating , Eqn. (28), the  bulk temperature can be defined as the dimensionless forms as follows: 
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And the heat transfer can be  written as : he 
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We can definw the  local Nusselt number (Nu)  as : 
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when applying BC in Eqn. (23) with 1w ξθ θ == , the eqn(up)  is written e as: 
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Now  from Eqn. (23), the temperature gradient for  1
d
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 is written as: 
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With coupling  the Eqns. (28), (33) and (34) and  Eqn. (31) , The Nusselt number (Nu) can be written as: 
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RESULTS AND DISCUSSIONS 

Due to the unavailability of the effect of dissipation (Br=), the resolution has been self-governing regarding if 
there is wall cooling or temperature. Nonetheless, gluey dissipation causes internal temperature of the liquid all 
the time; therefore, the solution would vary in accordance with the process that happens. As a criterion, 
Brinkman number (Br) has been selected to show the comparative significance of gluey removal. The briefness 
and status within an adequate range,( -1 < Br < 1). Wherever the values of Brinkman number is identical for 
temperature of wall (Tw <Tcand Br<0) case, which means that heat has been provided across walls into liquid, 
although the conversed notion is also true against negative values related to Br, which means cases of wall 
cooling (Tw <Tcand Br<0). 

As mentioned earlier, the thermal limit preconditions are considered, appropriate to pipeline wall is the 
persistent wall temperature. Considering this limit condition, both wall cooling and wall temperature cases have 
been treated and tested separately [17-20]. 
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Figures demonstrate the heat profiles become dimensionless through this parameter for wall temperature, no 
gluey dissipation and wall cases of wall cooling, individually, while such profiles are rooted in Eqn. (29). All of 
these plots ultimately make the clear notion about the aforementioned impacts of enhanced dissipation. As 
anticipated, enhanced dissipation grows towards the bulk heat of the liquid because of internal temperature of 
the liquid. For the case of wall temperature, this grows up within the liquid heat actively decreases the 
difference of heat between the fluid and the wall, as would be demonstrated later that has been pursued with a 
reduction in the heat transfer. Whenever the wall cooling has been implemented, because of the internal 
temperature impact of the gluey dissipation on the profile of the liquid temperature, the heat difference becomes 
enhanced with a growing of Br. In practice, the cooling of wall has been implemented for lessen of the heat 
bulk heat for a liquid. Hence, a degree of gluey dissipation can alternate the overall balance of heat. In the event 
that Brinkman number crosses a distinct limiting value, internally generated heat through gluey dissipation 
process tend to come on over the impact of the wall cooling.  

 

Figure 2. Fluid temperature profiles 

Figure (3) symbolizes the variety of the Nusselt number for persistent wall temperature case with rheological 
power-law index (properties) with Brinkman number of different values. While the profiles of the downstream 
and asymptotic Nusselt number are demonstrated concisely for the temperature of wall (Brinkman number > 0). 
Whenever the cooling of wall (Brinkman number <0) has been implemented to lessen the temperature of bulk 
for a liquid, as earlier described, size of dissipation can alternate the balance of heat on a whole. With the value 
of the growing of Br towards the downbeat direction, Nusselt number attains a certain asymptotic value. 
According to what has been noticed so far, whenever Br turns into becoming the infinity appropriate to either 
the case of wall temperature or wall cooling, Nusselt number gains the indifferent asymptotic value. It is 
because the heat created internally through gluey dissipation processes would help balance the impact of the 
wall cooling. Nominally, the Nusselt number on the basis of gluey effects appropriate to both wall cooling and 
wall temperature will be less than the non-gluey dissipation centric Nusselt number.  
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Figure 3. Power law index Effects on fluid temperature profiles 

 

 

Figure 4. Fluid temperature profiles 

As figure (4) corresponds to the variety of the Nusselt number on the basis of the Brinkman number against the 
persistent wall temperature case along with variant values regarding the power-law index (n). Practically, it’s an 
anticipated outcome, when the Eqn. (41) has been intimately tested. For wall temperature case, along with 
value of the growing of the Brinkman number, Nu gets reduced to accomplish values of persistent. It is because 
the variation of heat that drives the heat transfer becomes lessened. At Br=0.5, heat provided by wall into liquid 
has been balanced through the internal heat creation because of the gluey temperature. For Br>0.5, internally 
created heat by the gluey dissipation supersedes the wall heat. Whenever Br=1.0, Nu gets equal to an 
asymptotic worth. Nominally, Nusselt number on the basis of Newtonian liquid has been higher than that for 
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dilatants and pseudo-plastic fluids.  

 

Figure 4. Nusselt number Figure 

CONCLUSION 

The problem of forced convection regarding the heat transfer, with gluey dissipation within a pipeline, which 
subjects to persistent wall temperature, is resolved mathematically that has been a kind of Graetz problem. Full 
analytical resolutions for the liquid temperature as well as local Nu (Nusselt number) have been availed. The 
impact of the Br and the rheological power-law index (properties) upon local Nu profile are demonstrated 
through numerical measurements. The local Nu in thermal zone is about to grow with a decrement in an index 
of power-law replica (n). It exposed the gluey dissipation within a liquid is likely to remarkably create impact 
on laminar flowing heat transfer. In terms of the Graetz problem, the current mathematical system can be 
implemented to heat transfer for a pipeline and a concentrated annulus. And a route between parallel shields; it 
is also about to get implemented to heat transfer within a channel using a portable wall because no restriction is 
available on a form of the profile of velocity of the fluid. 
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