Evaluation of Arc Welding Process Practical Capability According to Joint Design Requirements

Kawakib A. K. Al- Mendwi*, Qasim M. Doos

Mechanical Engineering Department, Baghdad University, Baghdad, Iraq.

*Corresponding Author E-mail: Kawakib.Mendwi@coeng.uobaghdad.edu.iq

ABSTRACT: The difference between arc welding processes characteristics leads to variation between process capabilities. Similarly, welded joints vary based on design and other technical requirements. These variations deem certain processes more suitable to weld a specific joint while others might be unsuitable for the specific task. In this work a software to facilitate the identification and selection for five arc welding process base on their design and technical differences was developed. These arc welding methods are: shielded metal arc welding (SMAW), gas metal arc welding (GMAW), submerged arc welding (SAW), flux cord arc welding (FCAW) and gas tungsten arc welding (GTAW). The software model that developed in this paper consists of two main modules. The first module examined the weldability of the nine most common metals and alloys based on the relationship between the alloy nature and its thickness regarded to the five arc welding processes. The second module deals with compatibility between these welding processes and the joint configurations like joint type, edge and thickness. The new software was successfully verified on twelve case studies. Using software to screen the most capable processes is a precursor for automating the process of selecting the optimal welding process for the specific joint.

KEYWORDS: Computer aided Arc welding process capability, Material type, Material thickness, Joint type, Joint configuration.

INTRODUCTION

The welding or fusion joining processes is a permanent bonding process between two or more parts with or without filler metal, through the melting and fusing together of adjacent portions of the originally separate pieces. Generally, high temperatures beyond the melting point are produce by electric arc plasma, but in a few other welding methods the bond can be achieved by using alternative means. There are many methods for classifying arc welding processes such as by energy source, electrode type, shielding method, [1, 2], etc. The choice of a specific arc welding process depends on many factors including cost of production; working sequence; structural (mass) size; joint design; desired performance; end use of the joint; experience and abilities of manpower; parent metal and its metallurgical characteristics; types of joint, location, welding position; required accuracy of assembly; joint accessibility; welding equipment available; and welder skill. Usually, many welding processes can be used for a specific welding job. The two most critical factors that influence the process choice are the technical requirements and cost [3]. AWS defined the weldability as: “Weldability is the capacity of a material to be welded under the imposed fabrication conditions into a specific suitably designed structure and to perform satisfactorily in the intended service.”

This definition implies that the same metals considered exhibiting a good or poor weldability under different conditions [4]. Weldability can be subdivided into fabrication weldability and service weldability. Fabrication weldability is concerned with the easiness of welding the specific material, while service weldability is concerned with the successful welding of a specific joint configuration (geometry and material) utilizing a specific process [5]. Fusion arc welding, and electric resistance welding processes are between the most popular welding processes, as these are capable to produce a welded joint that can have a strength and toughness equal to, or greater than the welded materials. Service weldability is directly related to joint complexity, the more complicated the joint, the more difficult the welding to be [6]. The combination of (material – method of welding) has its own weldability characteristics and common welding defects. Thus, a satisfactory welded joint requires a good understanding of the factors that governs or influence the relation between the material weldability and the welding process. The materials factors that affected its weldability are: compositional heterogeneity, chemical composition, dimensions and cross-sections, metallurgical and physical condition prior to welding, physical properties, and mechanical constraints. While the factors that affected process capability are: rate of energy input,
energy source, degree of automation, and welding environment. The most popular welding processes are: SMAW, GMAW, GTAW, FCAW, Oxyacetylene Arc Welding (OAW), and Torch or oxyfuel Brazing (TB) [7].

Each welding process has its own characteristics that lead to different economic performance and different environmental impacts especially in heavy industry because of using huge amount of material and electricity [8]. The complexity in choosing a welding process consists from the large number of selection parameters that are often inter-dependent and contradictory in effect [9], while the performance of an engineering component is limited by the properties of its material and by the shapes to which this material can be formed [10]. The quality of the weld joints depends on the bead geometry and shape factors [11]. Some engineering materials have their own properties, but when joining these materials, they perceive some changing in these properties [12]. With the advent of technology the industry is continually moving from relying on the experts to computerized expert systems. To select the optimum welding process or a specific joint, a process capability check is completed as a precursor to the optimization process. This will ensure that the selected optimal process is capable of performing the weld of the specific joint [13, 14].

THE METHOD FOUNDATION

In this work a computer aided welding capability method is suggested and software was developed base on the suggested method. This section describes the architecture of the developed software and the underlying method. The method is based on evaluating the work piece weldability using each evaluating arc welding process as well as, the assessment of the compatibility of each process with the welded joint configuration. The weldability and compatibility assessment is carried out based on empirically established parameters in the industry. The parameters used in this work is collected from multiple sources including summarized parameters that are available in published scientific literature [15 – 22], parameters published by major welding suppliers [23 – 37] and direct input from industry experts [38].

Figure 1 shows the software architecture which is constitute from a weldability module, compatibility module and final comparator. The weldability module function is to assess the capability of each arc welding process to produce a sound welding joint in a substrate made of a specific material and thickness. The compatibility module evaluates the fitness of each arc welding process to weld a joint of a specific type, thickness and edge preparation. Finally the comparator will screen the processes that successfully pass both evaluations. The program was constructed to express the proposed system which employed C++ program language. Table 1. represent the technical comparison between arc welding processes which shows the variations and differences between each process which extracted from a collection of web pages related to major welding suppliers [13 – 27].

![Figure 1. The architecture of the program.](image-url)
Table 1: Technical Comparison between Arc Welding Processes [13 – 27]

<table>
<thead>
<tr>
<th></th>
<th>SMAW</th>
<th>SAW</th>
<th>FCAW</th>
<th>GMAW</th>
<th>GTAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode type</td>
<td>Consumable</td>
<td>Consumable</td>
<td>Consumable</td>
<td>Consumable</td>
<td>Non-Consumable</td>
</tr>
<tr>
<td>Filler type</td>
<td>Stick</td>
<td>Granulated</td>
<td>Hollow wire</td>
<td>Sold wire</td>
<td>Stick</td>
</tr>
<tr>
<td>Filler metal</td>
<td>Same us electrode</td>
<td>Added with flux</td>
<td>Same us electrode</td>
<td>Same us electrode</td>
<td>Externally added</td>
</tr>
<tr>
<td>Feed type</td>
<td>Intermittent</td>
<td>Continues</td>
<td>Continues</td>
<td>Continues</td>
<td>Intermittent optional</td>
</tr>
<tr>
<td>Electrode diameter (mm)</td>
<td>(1.5 – 10)</td>
<td>(0.8 – 4)</td>
<td>(1.6 – 6)</td>
<td>(0.6 to 6.4)</td>
<td>(1 to 8)</td>
</tr>
<tr>
<td>Shielding method</td>
<td>External flux</td>
<td>Gravitated flux</td>
<td>Internal flux</td>
<td>Argon and/or helium</td>
<td>Argon and/or helium</td>
</tr>
<tr>
<td>Flux type</td>
<td>Sold</td>
<td>Granulated</td>
<td>Sold</td>
<td>Gas</td>
<td>Gas</td>
</tr>
<tr>
<td>Current type</td>
<td>AC / DC</td>
</tr>
<tr>
<td>Current range (amp)</td>
<td>(75 – 400)</td>
<td>(150 – 3500)</td>
<td>(80 – 800)</td>
<td>(75 – 400)</td>
<td>(60-375)</td>
</tr>
<tr>
<td>Deposition amount (lbs/hr)</td>
<td>(1.5 – 12.6)</td>
<td>(7 – 48)</td>
<td>(3.2 – 30)</td>
<td>(1.9 – 17.1)</td>
<td>(0.5 – 5) lbs/hr</td>
</tr>
</tbody>
</table>

SOFTWARE ARCHITECTURE

The software main form showing the menu bar of the developed Arc Welding Process Capability System (AWPCS) is shown in Figure 3. The drop down menu of the AWPCS system consists of three subsystems, the first one named “Weldability of Materials”, the second subsystem named “Welding Compatibility”, and third subsystem named “Welding Capability”.

Weldability of Materials

The first subsystem deals with the compatibility between material – welding processes, and the materials that examined in the program are: a. Carbon steel, b. Low alloy steel, c. Stainless steel, d. Cast iron, e. Nickel and alloys, h. Aluminum and alloys, i. Titanium and alloys, j. Copper and alloys, k. Magnesium and alloys, l. Refractory alloys. Figure 4 shows the weldability of material form.

Welding Compatibility

The second subsystem deals with the compatibility between joint design – welding processes, and the joints that examined in the program are: a. Butt, b. Lap, c. Corner, d. Tee, e. Stud, Boss and Nozzle, f. Tube / Tube-sheet, g. Dissimilar Thickness, h. Surfacing. Figure 5 shows the welding compatibility form.
Butt Joint

If the user selects the option button “Butt” a new form with all types of edge type compatible with it as shown in Figure 6, and the edge type are: a1. Square edge, single or double-sided., plate, Sheet, and longitudinal in tube, a2. Grooved. single or double-sided, Plate, Sheet, and longitudinal in pipe or tube., a3. Wire, rod or bar., a4. Circumferential. Tube up to 100 mm outside diameter, a5. Circumferential. Pipe > 100 mm outside diameter, a6. Section.

Lap Joint

When the user selects the option button “Lap” a new form with all types of edge type compatible with it as shown in Figure 7, and the edge type are: b1. Sheet and plate. b2. Wire or rod to sheet or plate.

Corner Joint

When the user selects the option button “Corner” a new form with all types of edge type compatible with it as shown in Figure 8, and the edge type are: c1. Sheet or plate. c2. Flanged. c3. Frame in bar, miter or square. c4. Frame in tube or hollow section. c5. Frame in section, miter or square.

Tee Joint

When the user selects the option button “Tee” a new form with all types of edge type compatible with it as shown in Figure 9, and the edge type are: d1. Sheet or plate, fillet. d2 Sheet or plate, full penetration. d3. Sheet, flanged. d4. Structural. d5. Pipe, structural. d6. Pipe, for flow.

Stud, Boss and Nozzle Joint

When the user selects the option button “Stud, Boss and Nozzle” a new form with all types of edge type compatible with it as shown in Figure 10, and the edge type are: e1. , set on, e2. set in. e3. set through. e4. , flanged, set on. e5. flanged, set in. e6. flanged, set through.

Tube / Tube-Sheet Joint

Dissimilar Thickness Joint

When the user selects the option button “Dissimilar Thickness” a new form with all types of edge type compatible with it as shown in Figure 12, and the edge type are: g1. Butt, tapered. g2. Butt, rebated. g3. Fillet or lap. g4. Tee.

Surfacing Joint

When the user selects the option button “Surfacing” a new form with the compatible type with it as shown in Figure 13, and the edge type are: h1. Thickness refers to clad layer.

Welding Capability

The third subsystem distinguished and displayed the result of the two previous subsystems as shown in the Figure 14.
Figure 3. The software main form

Figure 4. Weldability of material form
Figure 5. Welding compatibility form

Figure 6. Welding compatibility form showing the joint edges types that corresponding to (Butt) joint

Figure 7. Welding compatibility form showing the joint edges types that corresponding to (Lap) joint
Evaluation Of Arc Welding Process Practical Capability According To Joint Design Requirements

Figure 8. Welding compatibility form showing the joint edges types that corresponding to (Corner) joint

Figure 9. Welding compatibility form showing the joint edges types that corresponding to (Tee) joint
Figure 10. Welding compatibility form showing the joint edges types that corresponding to (Stud, Boss And Nozzle) joint

Figure 11. Welding compatibility form showing the joint edges types that corresponding to (Tube / Tube-Sheet) joint
Figure 12. Welding compatibility form showing the joint edges types that corresponding to (Dissimilar Thickness) joint

Figure 13. Welding compatibility form showing the joint edges types that corresponding to (Surfacing) joint
APPLICATION AND RESULTS

To test the new software case studies were implemented on twelve types of welding joints that are parts of the following products: [Ladder, Staircase, Measurement bar, Frame, Gable Trusses shapeliness, Tank (Shell – Bottom), Bridge, Tank drain nozzle, Heat exchanger Tubes sheet, Tube sheet disassembler thickness, Surface facing (3) mm and Surface facing (5) mm]. The welded joint in the ladder staircase are for pieces of tube welding to longitudinal tubes all made of carbon steel (3) mm thick. The case results for applying the case study in the software are as follow: By applying “Weldability of Material” the results was “SMAW SAW GMAW GTAW”, by applying the “Welding Compatibility” the results was “FCAW GMAW GTAW” and by applying the “Welding Capability” the results was “GMAW GTAW”. Table 2. shows the details for each of the twelve case studies, while Table 3. shows all the software results for each of the case studies.

Table 2. Case Studies Descriptions and Application

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Description</th>
<th>Material</th>
<th>Thickness (mm)</th>
<th>Joint Type</th>
<th>Joint Edge</th>
<th>Joint Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ladder</td>
<td>Equipment access ladder</td>
<td>Carbon Steel</td>
<td>3</td>
<td>Butt</td>
<td>Circumferential, Tube up to 100 mm O/D</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Staircase</td>
<td>Building access staircase</td>
<td>Carbon Steel</td>
<td>3</td>
<td>Lap</td>
<td>Wire or rod to sheet or plate.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Measurement bar</td>
<td>Liquid depth metering bar with (3 – 4) in cross section welded along the tank</td>
<td>Carbon Steel</td>
<td>3</td>
<td>Butt</td>
<td>Section</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Frame</td>
<td>Room window Frame</td>
<td>Aluminum</td>
<td>6</td>
<td>Corner</td>
<td>Frame in bar, miter or square</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gable Trusses shapeliness</td>
<td>Gable roof support truss (5 – 12) peace</td>
<td>Carbon Steel</td>
<td>6</td>
<td>Corner</td>
<td>Frame in section, miter or square</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tank (Shell – Bottom)</td>
<td>Storage tank (Welding the shell to the bottom plate)</td>
<td>Carbon Steel</td>
<td>12</td>
<td>Tee</td>
<td>Sheet or plate, full penetration</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bridge</td>
<td>Bridge structure from 30 peace and up</td>
<td>Carbon Steel</td>
<td>45</td>
<td>Tee</td>
<td>Structural</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tank drain nozzle</td>
<td>Coupling welded to the tank shell for the drain nozzle</td>
<td>Carbon Steel</td>
<td>10</td>
<td>Stud, Boss and Nozzle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation Of Arc Welding Process Practical Capability According To Joint Design Requirements

Table 3. The software results for the case studies

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Weldability</th>
<th>Compatibility</th>
<th>Capability</th>
<th>Not Capable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ladder</td>
<td>SMAW SAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW</td>
</tr>
<tr>
<td>2</td>
<td>Staircase</td>
<td>SMAW SAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW GMAW</td>
</tr>
<tr>
<td>3</td>
<td>Measurement bar</td>
<td>SMAW GMAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW</td>
</tr>
<tr>
<td>4</td>
<td>Frame</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>GTAW</td>
<td>SAW SAW FCAW GMAW</td>
</tr>
<tr>
<td>5</td>
<td>Gable Trusses</td>
<td>SMAW SAW FCAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW GTAW</td>
</tr>
<tr>
<td>6</td>
<td>Tank (Shell)</td>
<td>SMAW SAW FCAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW GMAW</td>
</tr>
<tr>
<td>7</td>
<td>Bridge</td>
<td>SMAW SAW FCAW</td>
<td>SMAW GMAW</td>
<td>FCAW</td>
<td>SAW GTAW</td>
</tr>
<tr>
<td>8</td>
<td>Tank drain</td>
<td>SMAW SAW FCAW</td>
<td>SMAW GMAW</td>
<td>FCAW</td>
<td>SAW FCAW GTAW</td>
</tr>
<tr>
<td>9</td>
<td>Heat exchanger</td>
<td>SMAW SAW FCAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW GMAW</td>
</tr>
<tr>
<td>10</td>
<td>Tube sheet</td>
<td>SMAW SAW FCAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW GMAW</td>
</tr>
<tr>
<td>11</td>
<td>Weld joint</td>
<td>SMAW SAW FCAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW GMAW</td>
</tr>
<tr>
<td>12</td>
<td>Weld joint</td>
<td>SMAW SAW FCAW</td>
<td>SMAW GMAW</td>
<td>GTAW</td>
<td>SAW FCAW GMAW</td>
</tr>
</tbody>
</table>

EVALUATION AND ANALYSIS

In order to evaluate and analyze the results from the program, the methods of welding processes were sorted according to their capability to weld the joints in the studied cases; also the incapable welding processes were sorted according to the type of incapability whether it was based on (Weldability), (Compatibility) or both. Table 4. shows the capability of each method to weld the joint in each studied case, while Table 5. shows the reason for the incapability.

According to case studies results the following observations and analysis has been made:

SMAW: SMAW were capable in all the studied cases except case (11). In his case, the incapability were due to process compatibility with the low thickness cladding, as the elevated temperatures generated from the arc makes it difficult to control the welding process in low thickness cladding.

SAW: SAW was incapable, due to incompatibility in all the studied cases except (6, 10 and 12) where the welded components were plane surface with relatively higher thicknesses, since SAW is suitable for welding plane as well as cylindrical parts, with large diameter and thickness, that are rotatable allowing it to produce thicker welds.
in high quality with lower number of passes (down to one pass in many cases). The process met the capability due to weldability requirements in all the studied cases except (4) due to the low thickness and softness of the Aluminum, since SAW utilizes high current, high speed with high deposition rate.

FCAW: FCAW was only capable in the studied cases (6, 7, 10 and 12) as it comes next to SAW in voltage, speed and deposition rate, while, it was considered incapable in cases (1, 2, 3, 4, 9 and 11) in regards of weldability and compatibility due to the low thicknesses. In cases (5, 8) FCAW was suitable for the weldability requirements but failed the compatibility due to low thickness which lead to component melting because of the high temperatures generated in this process.

GMAW: GMAW met the weldability requirements for all of the studied cases, yet it was incompatible in cases (2, 4, 9 and 11) due to low metal thicknesses that is not suitable for the heat generated from GMAW process.

GTAW: GTAW is the least between the considered processes in regards to voltage, speed and deposition rate, which makes it not suitable for welding high thicknesses. This was the reason behind considering the process incapable and failing the weldability requirements in cases (6, 7, 8, and 10). Case (5) considered wieldable using GTAW yet it was considered incompatible due to high thickness.

Table 4. Case studies capability classifications

<table>
<thead>
<tr>
<th>Welding Process</th>
<th>Capable</th>
<th>Not Capable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMAW</td>
<td>[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12]</td>
<td>[11]</td>
</tr>
<tr>
<td>SAW</td>
<td>[6, 10, 12]</td>
<td>[1, 2, 3, 4, 5, 7, 8, 9, 11]</td>
</tr>
<tr>
<td>FCAW</td>
<td>[6, 7, 10, 12]</td>
<td>[1, 2, 3, 4, 5, 8, 9, 11]</td>
</tr>
<tr>
<td>GMAW</td>
<td>[1, 3, 5, 6, 7, 8, 10, 12]</td>
<td>[2, 4, 9, 11]</td>
</tr>
<tr>
<td>GTAW</td>
<td>[1, 2, 3, 4, 9, 11, 12]</td>
<td>[5, 6, 7, 8, 10]</td>
</tr>
</tbody>
</table>

Table 5: Not capable case studies classifications

<table>
<thead>
<tr>
<th>Welding Process</th>
<th>Not Capable</th>
<th>Not Capable in Weldability</th>
<th>Not Capable in Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAW</td>
<td>[1, 2, 3, 4, 5, 7, 8, 9, 11]</td>
<td>[4]</td>
<td>[1, 2, 3, 4, 5, 7, 8, 9, 11]</td>
</tr>
<tr>
<td>FCAW</td>
<td>[1, 2, 3, 4, 5, 8, 9, 11]</td>
<td>[1, 2, 3, 4, 9, 11]</td>
<td>[1, 2, 3, 4, 5, 8, 9, 11]</td>
</tr>
<tr>
<td>GMAW</td>
<td>[2, 4, 9, 11]</td>
<td></td>
<td>[2, 4, 9, 11]</td>
</tr>
<tr>
<td>GTAW</td>
<td>[5, 6, 7, 8, 10]</td>
<td>[6, 7, 8, 10]</td>
<td>[5, 6, 7, 8, 10]</td>
</tr>
</tbody>
</table>

CONCLUSIONS

A system for screening the arc welding process that is capable of welding a specific joint is developed and programmed into software. The new software were carefully evaluated and discussed with industry experts. The results showed that the software and the underlying method produced accurate results. Even though, the software showed success in analyzing the studied joints, still, the full potential of the method lay in its adaptability to any potential work environment or special welding process. The adaptation of this method in any work environment can reduce the reliance on the welding experts and improve process selection reliability. This eventually will improve cost and productivity successful screening of the arc welding process that can perform a specific weld is the precise for selecting the optimum process for the specific joint.

ACKNOWLEDGMENTS

The authors are grateful and wish to express their sincere thank to M. Sc. Engineer Mr. Omar Atheer Majibel, the administrator of Welding Division in "Heavy Engineering Equipment State Company (HEESCO)” in Baghdad, Iraq for providing the information’s about the case studies used in this research.

REFERENCES

