Prominent Ultraviolet Photovoltaic Detector Based on Poly (3-hexylthiophene) and ZnO Quantum Dots
Author(s):
H. X. Yang, X. Fang, J. W. Huang, X. X. Luo, Y. Xu, D. R. Wu
Affiliation(s):
Baoshan University of technology, Baoshan 678000, China
ABSTRACT: Ultraviolet photovoltaic (UV) photodetector is a kind of important optoelectronic devices that has vital applications in both scientific and engineering fields. The development of UV photodetectors has been impeded because of lacking stable p-type wide-gap semiconductor which is crucial for high-performance, low-cost, large-area UV photovoltaic detector. In this paper, we report a novel UV photovoltaic detector fabricated using poly (3-hexylthiophene) (P3HT) as a sole photoactive material. The highest detectivity (D*) reaches 5.94×1010 cm Hz1/2/W at 1.5 V bias voltage at room temperature under 365 nm illumination. The physical, optical, electrical, and photovoltaic properties, including TEM, Raman, I-V, C-V, and photoresponse have been systematically investigated to disclose the internal mechanism. The present study paves the way for developing high-performance, low-cost UV focal plane array detectors.
Keywords : P3HT; ZnO quantum dots; UV photovoltaic detector.
References
[1] E. Monroy, F. Omne`s, F. Calle, Semicond, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol. 18 (2003) R33-R51.
[2] Y. A. Goldberg, Semicond, Semiconductor near-ultraviolet photoelectronics, Semicond. Sci. Technol. 14 (1999) R41–R60.
[3] C. W. Tang, Twolayer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183-185.
[4] P. Peumans, A. Yakimov, S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93 (2003) 3693-3723.
[5] P. Peumans, V. Bulovic, S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett. 76 (2000) 2650-2652.
[6] P. Peumans, S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 79 (2001) 126-128.
[7] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions, Appl. Phys. Lett. 85 (2004) 5757-5759.
[8] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science. 270 (1995) 1789-1792.
[9] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature. 376 (1995) 498-499.
[10] T. Tsuzuki, Y. Shirota, J. Rostalski, D. Meissner, The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment, Sol. Energy Mater. Sol. Cells. 61 (2000) 1-8.
[11] E. E. Neuteboom, S. C. J. Meskers, P. A. van Hal, J. K. J. van Duren, E. W. Meijer, R. A. J. Janssen, H. Dupin, G. Pourtois, J. Cornil, R. Lazzaroni, J. L. Bredas, D. Beljonn, Alternating Oligo(p-phenylene vinylene)-Perylene Bisimide Copolymers: Synthesis, Photophysics, and Photovoltaic Properties of a New Class of Donor-Acceptor Materials, J. Am. Chem. Soc. 125 (2003) 8625-8638.
[12] P. Peumans, V. Bulovic´, and S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett. 76 (2000) 2650-2652.
[13] B. Chu, D. Fan, W. L. Li, Z. R. Hong, R. G. Li, Organic-film photovoltaic cell with electroluminescence, Appl. Phys. Lett. 81 (2002) 10-12.
[14] Z. R. Hong, C. S. Lee, S. T. Lee, W. L. Li, Y. Shirota, Bifunctional photovoltaic and electroluminescent devices using a starburst amine as an electron donor and hole-transporting material, Appl. Phys. Lett. 81 (2002) 2878-2880.
[15] H. Z. Wei, W. L. Li, M. T. Li, W. M. Su, Q. Xin, J. H. Niu, Z. Q. Zhang, Z. Z. Hu, White organic electroluminescent device with photovoltaic performances, Appl. Surf. Sci. 252 (2006) 2204-2208.
[16] D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Improved energy transfer in electrophosphorescent devices, Appl. Phys. Lett., 1999, 74, 442-444.
[17] I. G. Hill, Organic semiconductor heterointerfaces containing bathocuproine, J. Appl. Phys. 86 (1999) 4515-4519.
[18] K. Itano, H. Ogawa, Y. Shirota, Exciplex formation at the organic solid-state interface: Yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato) aluminum and hole-transporting molecular materials with low ionization potentials, Appl. Phys. Lett. 72 (1998) 636-638.
[19] T. Noda, H. Ogawa, Y. Shirota, A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material, 5, 5′-Bis (dimesitylboryl)-2, 2′-bithiophene, Adv. Mater. 11 (1999) 283-285.
[20] Xiaoyong Xu,ab Chunxiang Xu,*a Xuemei Wang,a Yi Lin,a J. Daia and Jingguo Hu, Control mechanism behind broad fluorescence from violet to orange in ZnO quantum dots, Cryst. Eng. Comm. 15 (2013) 977-981.
[21] S. Moussa, F. Namouchi, H. Guermazi, Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites, Eur. Phy. J. Plus 130 (2015) 1-9.
[22] M. Louhichi, S. Romdhane, A. Fkiri, L. S. Smiri, H. Bouchriha, Structural and photoluminescence properties of Al-doped zinc oxide nanoparticles synthesized in polyol, Appl. Surf. Sci. 356 (2015) 998-1004.
[23] M. M. Tavakoli, H. Aashuri, A.Simchi, Z. Y. Fan, Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells, Phys. Chem. Chem. Phys. 17 (2015) 24412-24419.