Vol. 39, No. 1 (2016) (9)

Prominent Ultraviolet Photovoltaic Detector Based on Poly (3-hexylthiophene) and ZnO Quantum Dots

Author(s): 
H. X. Yang, X. Fang, J. W. Huang, X. X. Luo, Y. Xu, D. R. Wu

Affiliation(s): 
Baoshan University of technology, Baoshan 678000, China

Cite this paper
H. X. Yang, X. Fang, J. W. Huang, X. X. Luo, Y. Xu, D. R. Wu, “Prominent Ultraviolet Photovoltaic Detector Based on Poly (3-hexylthiophene) and ZnO Quantum Dots”, Journal of Mechanical Engineering Research and Developments, vol. 39, no. 1, pp. 57-61, 2016. DOI: 10.7508/jmerd.2016.01.009

ABSTRACT: Ultraviolet photovoltaic (UV) photodetector is a kind of important optoelectronic devices that has vital applications in both scientific and engineering fields. The development of UV photodetectors has been impeded because of lacking stable p-type wide-gap semiconductor which is crucial for high-performance, low-cost, large-area UV photovoltaic detector. In this paper, we report a novel UV photovoltaic detector fabricated using poly (3-hexylthiophene) (P3HT) as a sole photoactive material. The highest detectivity (D*) reaches 5.94×1010 cm Hz1/2/W at 1.5 V bias voltage at room temperature under 365 nm illumination. The physical, optical, electrical, and photovoltaic properties, including TEM, Raman, I-V, C-V, and photoresponse have been systematically investigated to disclose the internal mechanism. The present study paves the way for developing high-performance, low-cost UV focal plane array detectors.

Keywords : P3HT; ZnO quantum dots; UV photovoltaic detector.

References
[1] E. Monroy, F. Omne`s, F. Calle, Semicond, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol. 18 (2003) R33-R51.
[2] Y. A. Goldberg, Semicond, Semiconductor near-ultraviolet photoelectronics, Semicond. Sci. Technol. 14 (1999) R41–R60.
[3] C. W. Tang, Twolayer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183-185.
[4] P. Peumans, A. Yakimov, S. R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93 (2003) 3693-3723.
[5] P. Peumans, V. Bulovic, S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett. 76 (2000) 2650-2652.
[6] P. Peumans, S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 79 (2001) 126-128.
[7] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions, Appl. Phys. Lett. 85 (2004) 5757-5759.
[8] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science. 270 (1995) 1789-1792.
[9] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature. 376 (1995) 498-499.
[10] T. Tsuzuki, Y. Shirota, J. Rostalski, D. Meissner, The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment, Sol. Energy Mater. Sol. Cells. 61 (2000) 1-8.
[11] E. E. Neuteboom, S. C. J. Meskers, P. A. van Hal, J. K. J. van Duren, E. W. Meijer, R. A. J. Janssen, H. Dupin, G. Pourtois, J. Cornil, R. Lazzaroni, J. L. Bredas, D. Beljonn, Alternating Oligo(p-phenylene vinylene)-Perylene Bisimide Copolymers: Synthesis, Photophysics, and Photovoltaic Properties of a New Class of Donor-Acceptor Materials, J. Am. Chem. Soc. 125 (2003) 8625-8638.
[12] P. Peumans, V. Bulovic´, and S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett. 76 (2000) 2650-2652.
[13] B. Chu, D. Fan, W. L. Li, Z. R. Hong, R. G. Li, Organic-film photovoltaic cell with electroluminescence, Appl. Phys. Lett. 81 (2002) 10-12.
[14] Z. R. Hong, C. S. Lee, S. T. Lee, W. L. Li, Y. Shirota, Bifunctional photovoltaic and electroluminescent devices using a starburst amine as an electron donor and hole-transporting material, Appl. Phys. Lett. 81 (2002) 2878-2880.
[15] H. Z. Wei, W. L. Li, M. T. Li, W. M. Su, Q. Xin, J. H. Niu, Z. Q. Zhang, Z. Z. Hu, White organic electroluminescent device with photovoltaic performances, Appl. Surf. Sci. 252 (2006) 2204-2208.
[16] D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Improved energy transfer in electrophosphorescent devices, Appl. Phys. Lett., 1999, 74, 442-444.
[17] I. G. Hill, Organic semiconductor heterointerfaces containing bathocuproine, J. Appl. Phys. 86 (1999) 4515-4519.
[18] K. Itano, H. Ogawa, Y. Shirota, Exciplex formation at the organic solid-state interface: Yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato) aluminum and hole-transporting molecular materials with low ionization potentials, Appl. Phys. Lett. 72 (1998) 636-638.
[19] T. Noda, H. Ogawa, Y. Shirota, A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material, 5, 5′-Bis (dimesitylboryl)-2, 2′-bithiophene, Adv. Mater. 11 (1999) 283-285.
[20] Xiaoyong Xu,ab Chunxiang Xu,*a Xuemei Wang,a Yi Lin,a J. Daia and Jingguo Hu, Control mechanism behind broad fluorescence from violet to orange in ZnO quantum dots, Cryst. Eng. Comm. 15 (2013) 977-981.
[21] S. Moussa, F. Namouchi, H. Guermazi, Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites, Eur. Phy. J. Plus 130 (2015) 1-9.
[22] M. Louhichi, S. Romdhane, A. Fkiri, L. S. Smiri, H. Bouchriha, Structural and photoluminescence properties of Al-doped zinc oxide nanoparticles synthesized in polyol, Appl. Surf. Sci. 356 (2015) 998-1004.
[23] M. M. Tavakoli, H. Aashuri, A.Simchi, Z. Y. Fan, Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells, Phys. Chem. Chem. Phys. 17 (2015) 24412-24419.