Vol. 40, No. 4 (2017) (5)

Range and Doppler Ambiguity Elimination in Coherent Radar using Quasicontinuous Signals

N.E. Bystrov†, I.N. Zhukova‡, V.M. Reganov§, S.D. Chebotarev††


† Chief research officer Department Radiosystems, Novgorod State University, Velikiy Novgorod, Russian Federation
‡ Head of Radiosystems Department, Novgorod State University, Velikiy Novgorod, Russian Federation
§ Head of R&D Department, Novgorod State University, Velikiy Novgorod, Russian Federation
††Research officer Department Radiosystems, Novgorod State University, Velikiy Novgorod, Russian Federation
Cite this paper
N.E. Bystrov, I.N. Zhukova, V.M. Reganov, S.D. Chebotarev, “Range and Doppler Ambiguity Elimination in Coherent Radar using Quasicontinuous Signals”, Journal of Mechanical Engineering Research and Developments, vol. 40, no. 4, pp. 562-571, 2017. DOI: 10.7508/jmerd.2017.04.005

ABSTRACT: Modern radars use pulse signals with a various repetition rate. The main drawback of repetitive signals is the range and Doppler ambiguities, caused by multiple peaks in an ambiguity function. Well-known methods of ambiguity elimination suggest either multistep processing procedures, or the partial elimination of this drawback. This paper analyzes a new approach of range and Doppler ambiguities elimination in pulse Doppler radars using amplitude-phase coded signals with a pseudorandom pulse repetition interval and duration for a long duration coherent processing interval (quasicontinuous signals). Signals described here have the thumbtack ambiguity function with single peak. They eliminate the range and Doppler ambiguities and make it possible to use one antenna for simultaneous probing and reception, with a low peak-to-average power ratio. The method of synthesis, the receive window ratio and the ambiguity function are shown. Energy characteristics are described.

Keywords : Pulse Doppler radar; Range ambiguity; Doppler ambiguity; Radar systems; Pulse modulation; Phase shift keying; Radar waveforms; Velocity measurement; Distance measurement.

[1] Levanon, N., Mozeson, E. (2004). Radar signals. NewYork, USA: Wiley.
[2] Nathanson, F. E. (1969). Radar Design Principles, 1st Ed. New York: McGraw-Hill, pp. 720.
[3] Richards, M. (2005). Fundamentals of Radar Signal Processing. New York: McGraw-Hill, pp. 513.
[4] Sparse-based false target identification in pulse-Doppler radar with random pulse initial phase. 2015 International Conference on Wireless Communications & Signal Processing (WCSP), October 2015.
[5] Schleher, D. C. (1991). MTI and Pulsed Doppler Radar. Boston: Artech, pp. 639.
[6] Skolnik, M. (2001). Introduction to Radar Systems, 3rd ed. McGraw-Hill, New York, pp. 513.
[7] Sreenivasa Rao, B.M.S.,  Dhupam, A. K.,  Odugu, K. (2015). Performance  Analysis of  Range  and  Doppler Information for  Better  (S/N)  Signal  to  Noise  Ratio using  Pulse  Doppler  Radar. Journal  of  Technological Advances and Scientific Research, Vol. 1, No. 2, pp. 68-74
[8] Skolnik, M. I. (2008). Radar Handbook. NewYork, USA: McGraw-Hill Professional, pp. 1352.
[9] Yao, K., Lorenzelli, F., Chen, C. E. (2013). Detection and Estimation for Communication and Radar Systems. Cambridge University Press, pp. 336.
[10] Beiyi, L., Gui, G., Matsushita S., Xu L. (2017). Sparse target detection of pulse Doppler radar based on two dimensional iterative hard thresholding algorithm. 29th Chinese Control And Decision Conference (CCDC)..
[11] Prinsen, P. J. A. (1973). Elimination of blind velocities of MTI radar by modulating the interpulse period. IEEE TransAerosp. Electron. Syst., Vol. AES-9, No. 5, pp. 714-724.
[12] Levanon, N. (2009). Mitigation Range Ambiguity in High PRF Radar using Inter-Pulse Binary Coding. IEEE Trans. Aerosp. Electron. Syst., Vol. 45, No. 2, pp. 687-697.
[13] Milstein L. B. (1978). Reduction of eclipsing loss in high PRF radars. IEEE Trans. Aerosp. Electron. Syst., Vol. AES-14, No. 2, pp. 410-415.
[14] Ahmadi, M., Mohamedpour, K. (2012). PRI Modulation Type Recognition Using Level Clustering and Autocorrelation.  Amer. J. Signal Process., Vol. 2, No. 5, pp. 83-91.
[15] Thomas, H.W., Abram, T.M. (1976). Stagger period selection for moving-target radars. Proc. Inst. Elect. Eng., Vol. 123, No. 3, pp. 195-199.
[16] Zhu, J., Zhao, T., Huang, T., et al. (2016). Analysis of Random Pulse Repetition Interval Radar. Proc. IEEE Radar Conf.
[17] Kaveh, M., Cooper, G. R. (1976). Average ambiguity function for a randomly staggered pulse sequence. IEEE Trans. Aerosp. Electron. Syst., Vol. AES-12, No. 3, pp.410-413.
[18] Xia, X.-G. (1999). Doppler Ambiguity Resolution Using Optimal Multiple Pulse Repetition Frequencies. IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 1, pp. 371-379.
[19] Rasool, S. B., Bell, M. R. (2010). Efficient pulse-Doppler processing and ambiguity functions of nonuniform coherent pulse trains. IEEE Radar Conference, pp.1150-1155.
[20] Deng, Z., Ye, L., Fu, M., Zhao, C. (2013). Doppler ambiguity resolution based on random sparse probing pulses. Radar Conference 2013, IET International, Xi’an, pp. 1-5.
[21] Song, W. S. (2013). Efficient pulse Doppler radar with no blind ranges, range ambiguities, blind speeds, or Doppler ambiguities. US 2013/0278455 A1.
[22] Kalenitchenko, S. P., Rodionov, R. V. (2001). Clutter suppression in radar by quasi-continuous complex signal and processing algorithm structure optimization. Proceedings of the 2001 IEEE Radar Conference (Cat. No.01CH37200), Atlanta, GA, pp. 438-443.
[23] Arlery, F., Kassab, R., Tan, U., Lehmann, F. (2016). Efficient Gradient Method for Locally Optimizing the Periodic/Aperiodic Ambiguity Function. IEEE Radar Conference 2016 (RadConf 2016), Philadelphie, PA, United States.